Asynchronous Partitioning Framework
(Extended Abstract)

Vitaliy Freidovich
Department of Mathematics and Computer Science
The Open University of Israel
Raanana, Israel

f_vitaliy@yahoo.com

ABSTRACT

A new general framework for agent cooperation and coordination
in solving distributed constraint satisfaction problems (DCSPs) is
presented. The Asynchronous Partitioning Framework (APF) first
partitions agents into groups of agents, based on some heuristic,
prior to any search being conducted. During the partitioning phase
one of the agents in each group is assigned the role of a group
leader. Next, two distinct types of search processes among the
agents are performed concurrently. The first type of search is
conducted within each group, in parallel and asynchronously to
all searches in other groups. The second type of search, the global
search, is conducted between the groups, and treats each group as
if it is a single agent represented by its group leader. The structure
of the groups remains static throughout the search processes. Two
distinct algorithms implementing APF are presented, and the
advantages of APF are evaluated experimentally.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
— multiagent systems, coherence and coordination.

General Terms
Algorithms, Design, Measurement, Performance.

Keywords
Distributed Constraints Satisfaction; Distributed Search;
Distributed Problem Solving; Distributed Partitioning.

1. INTRODUCTION

Distributed Constraint Satisfaction Problems (DCSPs) are
composed of a set of agents. Each agent holds a set of variables,
has a local representation of the constraint network, and is
connected to other agents’ variables by some constraints. The role
of an agent is to assign values to its variables, attempting to
generate a locally consistent assignment, exchanging messages for
communication with constraining agents.

The present paper proposes a new approach for solving DCSPs,
based on the actual structure of a given DCSP as represented by
Cite as: Asynchronous Partitioning Framework (Extended Abstract),
Vitaliy Freidovich and Amnon Meisels, Proc. of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2010), van der
Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10-14, 2010,
Toronto, Canada, pp.1425-1426 Copyright © 2010, International
Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

1425

Amnon Meisels
Department of Computer Science
Ben-Gurion University of the Negev
Beer-Sheva, Israel

am@cs.bgu.ac.il

its constraints graph. The Asynchronous Partitioning Framework
(APF) adheres to the fail first principle by concentrating
computational efforts first on the most constrained regions of the
constraints graph. This is achieved by partitioning the DCSP into
groups, each representing such a region, and conducting local
searches inside each group in parallel to other groups. The results
of the local searches are combined into a complete solution by
performing a global search between the groups.

2. PARTITIONING FRAMEWORK

The Asynchronous Partitioning Framework (APF) is composed of

the following 4 distinct components:

1. The group partitioning algorithm, GroupPartition, partitions a
given set of agents into disjoint groups, each group having a
single group leader.

. The local search algorithm, LocalSearch, conducts a search
inside each group.

. The global search algorithm, GlobalSearch, conducts a global

search among all the groups.

The coordination engine is the heart of APF, and coordinates

the LocalSearch and the GlobalSearch algorithms.

The search inside each group is synchronized with a token. While

expanding a token, each agent tries to keep it consistent with its

constraints inside its group and with constraints with agents in

groups that have a higher priority than the current group, ignoring

constraints with agents in lower priority groups. Each agent

informs group leaders of agents in lower groups it is connected to

when its value is changed, and assumes that they will adjust to its

new assignment by changing their assignments if necessary. When

receiving a value change notification for an agent a;, its group

leader must act upon the location of the token within the group,

restarting the search at a;, if necessary.

4,

3. THE AGP ALGORITHM

The Asynchronous Group Partitioning (AGP) algorithm is an
implementation of APF. It is composed of 4 phases: (1) Priority
computation; (2) Group partitioning; (3) Group ordering, which
together implement the GroupPartition algorithm, and (4) Search
for a solution, which implements the coordination engine of APF.

3.1 Priority Computation Phase

The priorities of agents are calculated in a distributed manner
using a simple heuristic, based on the density of the agent's
neighborhood in the constraints graph, by employing the formula

find_group_leader:

. agent « first(sortedListOfNeighbors)
. remove(agent, sortedListOfNeighbors)
. if (agent = self)
set_self as group leader

. else

6. send(JOIN, agent)

set_self _as_group_leader:
1. groupLeader « self

2. isGroupLeader « true

3. add(self, group)

4. for each agent in waitingToJoinList do

5. add(agent, group)

6. send(JOINED, agent)

7. for each agent in listOfAllAgents do

8. send(SET_ MY _GROUP_LEADER, groupLeader, agent)
join(agent)

1. if (isGroupLeader)

2. add(agent, group)

3. send(JOINED, agent)

4. else if (isNotGroupLeader)

5. send(NOT _JOINED, agent)

6. else

7. add(agent, waitingToJoinList)

joined(agent)

1. groupLeader < agent

2. isNotGroupLeader « true

3. for each agent in waitingToJoinList do

4. send(NOT_JOINED, agent)

5. for each agent in listOfAllAgents do

6. send(SET_MY_GROUP_LEADER, groupLeader, agent)

Figure 1. Group partitioning phase

Pa; = kﬁ-zj:1ki(CommonNeighbors(a;,aj)), where Pa; is a;’s priority,
k; is the number of a;’s neighbors, and CommonNeighbors(a;,a;)
returns the number of agents which are neighbors of both a; and a;.

3.2 Group Partitioning Phase

Figure 1 presents the group partitioning phase of agents into
disjoint groups. The group partitioning phase starts by running
find_group_leader, which tries to find the appropriate agent in
each agent’s neighborhood for being its group leader. The search
is conducted according to the priorities of the different neighbors
computed in the priority computation phase, equal priorities being
resolved lexicographically. During this process each neighbor is
fetched from sortedListOfNeighbors (ordered by priorities), and
sent a JOIN message which requests it to add the current agent to
its group. If it denies the request, by sending a NOT JOINED
message, find group leader is called again by AGP. Once the
group leader of the current agent had been determined, it informs
all other agents, with a SET MY GROUP_LEADER message.

3.3 Group Ordering & Search Phases

The group ordering phase orders the agents within each group, in
accordance with the Inner Group Priority (IGP). IGP is calculated
by using another simple heuristic, based on the size of groups
which are connected to the current agent by some constraint.

AGP's search for solution phase is implemented by replacing

1426

n=zo
2500000 4
1 Py
1 7Y
I 7\
I s\
1 s\
1 - \
I Vs 1
1 Vg \ _ N
1 - - 1 —e—COompAFD
[R A I
1 - o e N —m— AGF-UBJ
Suuuuu ‘I A\ -
1 —_— -
o 4 -
U.0 0.1 0.20.30.405060./70.8091.0
ra

Figure 2. AGP-CBJ vs. CompAPO

APF's LocalSearch and GlobalSearch algorithms with SBT [3]
and CBJ [2] algorithms, respectively.

4. THE AGP-CBJ ALGORITHM

APF is a general framework, as both the search inside each group
and the search between the groups can be implemented by any
algorithm preserving certain properties. To demonstrate this idea
we have implemented the Asynchronous Group Partitioning
Conflict Based Back-Jumping (AGP-CBJ) algorithm, as a second
implementation of APF. AGP-CBJ is a natural evolution of the
AGP algorithm. It is identical to the AGP algorithm, except that in
AGP-CBJ the CBJ algorithm is used for the LocalSearch
algorithm instead of the SBT algorithm.

5. EXPERIMENTAL EVALUATION

To evaluate the performance of APF, a number of experiments on
randomly generated networks of constraints had been conducted.
Figure 2 presents a comparison of the computational effort of
AGP-CBJ and CompAPO [1] by Non-Concurrent Constraint
Checks (NCCCs). The constraints density parameter - p;, and the
tightness parameter - p,, were varied between 0.1 and 0.9. For
each combination of p; and p,, 10 different instances of problems
had been generated, with 20 variables and domain of 10 values.
NCCCs had been averaged for all problems with the given p;, and
all values of p,. Clearly, AGP-CBJ outperforms CompAPO.

6. DISCUSSION

A new framework for agent cooperation and coordination in
solving DCSPs was presented. APF is driven by the structure of
the underlying constraints graph of a given DCSP, focusing the
computational efforts on the more difficult regions of the problem
first. Two distinct algorithms, AGP and AGP-CBJ which
implement it were presented. AGP-CBJ was shown
experimentally to outperform CompAPO.

7. REFERENCES

[1] Grinshpoun, T. and Meisels, A., "Completeness and
performance of the apo algorithm", Journal of Artificial
Intelligence Research, Vol.33, pp.223-258, 2008.

Prosser, P., "Hybrid algorithms for the constraint satisfaction
problem", Computational Intelligence, Vol.9, pp.268-299,
1993.

Yokoo, M., Durfee, E. H., Ishida, T. and Kuwabara, K.,
"Distributed constraint satisfaction problem: Formalization
and algorithms", IEEE Transactions on Data and Knowledge
Engineering, Vol.10, pp.673-685, 1998.

(2]

(3]

